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Abstract Atmospheric Plasma Spray (APS) is one of the most leading industrial techniques for 
protective coating, by improving the performance of parts in the thermal barrier, and wear 
resistance. Ni-Al alloys are very effective players in the field of design of protective coatings. 
Accordingly, mixed Al, Ni/Al, and Ni5Al powders were applied on 304stainless steel substrate 
to develop plasma sprayed coatings. The effect of different compositions on microstructure, 
microhardness, and porosity was measured. The microstructures of the as-deposited films were 
characterized utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), and 
microhardness measurements.  The results showed the formation of two intermetallic 
compounds, namely: NiAl and Ni3Al. The existence of NiAl is inevitable in all samples, despite 
the amount of Ni-based alloys in mixtures, or even the atomic percentage of nickel, where the 
appearance of Ni3Al depends only on increasing the amount of the Ni-based alloy to 50 % 
percent in mixtures. As regards the steel substrate, the microhardness of the interdiffusion zone 
of the substrate has been significantly enhanced. Results have shown that the microhardness of 
the different tested coatings is increased directly with the increment of Ni-based percentage in 
the coating mixture. The average porosity of the plasma sprayed coatings has proven to be within 
the normal range. 

1. Introduction 
Thermal spraying serves a wide range of industrial applications through different coating materials. 
Metallic, ceramic, and some polymeric materials in the form of powder, ceramic rod, or wire can be 
used to develop a coating. The diversity in materials and techniques is the main advantage of thermal 
spraying technology. Besides, the process has the ability of coating production without extremely 
heating the substrate [1], [2]. Applications of protection have always been a great concern to research 
society when it comes to mechanical parts that are subjected to structural failures during operation. This 
can be widely seen in gas turbine systems. Thus, boosting the efficiency can be maintained through the 
design of a thermal barrier coating (TBC). The TBC structure is based on two layers regardless of the 
substrate underneath. The layer just above the substrate is the bond coat while the final layer is named 
the topcoat. One of the most leading industrial techniques for depositing protective coatings is 
Atmospheric plasma spraying (APS); APS enhances part’s performance in wear, corrosion, and can 
deposit layers as a thermal barrier, which have an impact on parts’ life, value, and machinery downtime. 
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During the spraying process, powders are heated to be molten droplets and then accelerated by the heat 
source, whereupon the molten droplets impact the substrate and rapidly solidify to form a coating layer. 
Porosity and cracks are the two critical features that must be tightly controlled. They are formed during 
the process of solidification of impacting particles. Porosity level depends on the process parameters; 
speed, spray distance, and particle size [3]–[5]. The porosity of thermal spray coatings is usually between 
5 – 15% by volume. However, it could be controlled in APS to reach approximately 7%. The major 
disadvantage of plasma spraying technology is the line-of-sight. Accordingly, the substrate surface must 
be visible to the area of motion of the APS torch [6]–[9]. 

Austenitic stainless steel (304) has been chosen as a substrate due to its good corrosion resistance 
and excellent creep rupture strength; it has been extensively utilized in the manufacturing of many 
components of conventional power plants [10]–[13]. However, its low corrosion resistance in high-
temperature environments makes it essential to develop a protective layer. 
Using Aluminum-based coatings in different industries, e.g., aerospace and automotive is attributable to 
its high strength-to-weight ratio, high electrical and thermal conductivity, adequate corrosion resistance, 
and affordable metal. These properties made Aluminum-based coating is an optimum choice for steel 
protection against corrosion with suitable cost reduction. Despite all these advantages, low hardness 
could be the main limitation for Aluminum to be widely used [14], [15]. 

On the other hand, according to Kadir [16], nickel alloys are good candidates for bond coat layers in 
high-temperature applications due to their high melting temperature, good mechanical properties, and 
oxidation resistance. Ni-Al-based alloys, in particular, have high oxidation resistance, high hardness, 
and low density [17], [18]. As stated by many studies, the most common stable intermetallic compounds 
are NiAl and Ni3Al; their excellent mechanical strength, desirable wear-resistant, and sufficiently high 
melting temperature (1640  ֯◌C and 1390  ֯◌C, respectively), provide sustainable performance at elevated 
temperature. [19]–[27]. 

Ni/Al[28] and Ni5Al [3], [15] powders are extensively configured with APS [29]–[31], with adequate 
processing parameters and appropriate measures that exhibit adequate adherence to the substrate and 
required thickness [17]. They exothermically react and provide nickel aluminides phases, which is 
mainly used as an effective bond coat for thermal barrier coating [32]. For instance, a study of Ni5Al 
coating on three types of superalloys in [33] stated that the coating provided good protection in an 
aggressive environment, especially for Superfer 800. 

Ni3Al [34]–[37] and NiAl [6], [10], [31], [38] are potential intermetallic alloys that have an adequate 
yield strength that proportionally increases with temperature, low density, and high melting point. 
Enough Aluminum in their compositions could form, in oxidizing environments, thin films of Alumina 
(Al2O3), which in turn results in excellent oxidation resistance, compact and protective coating. 

In practice, the coating is not affected only by a single service condition, but many conditions appear 
simultaneously [32], [39]–[41]. The coating must sufficiently resist various types of wear and corrosion. 
Therefore, it has come to mind to use Ni-Al powders in the Aluminum coating matrix, which in turn, 
could be a suitable additive to pure Aluminum to enhance coating hardness [42]–[44]. 
The present work is an investigation on stainless steel coating performance, morphology, and 
microstructure adopting mixtures of Ni/Al or Ni5Al with pure Aluminum as coating materials 
prepared by atmospheric plasma spraying technique deposited on a stainless-steel substrate. 

2. Experimental procedures 
Austenitic Cr-Ni stainless steel (AISI 304) has been selected as a Substrate due to its practical application 
in cases where high wear and corrosion resistance are of prime importance. Atmospheric Plasma Spray 
(APS) has been applied for surface coating with preassigned powders. Different samples of powders of 
Ni/Al or Ni5Al have been mixed with pure Aluminum powder at different percentages. Table 1 shows 
compositions of powder mixtures of tested samples. To maintain uniformity during the deposition, all 
the powders were thoroughly mixed via ball milling for 6 hours at 200 rpm. 
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Table 1 Composition of different sprayed coating powders 

Sample 
Compositions (wt. %) 

Ni/Al 
(80/20) 

Ni 5Al 
(95/5) 

Pure 
Al 

1A 10 - 90 
3A 30 - 70 
5A 50 - 50 
1B - 10 90 
3B - 30 70 
5B - 50 50 

 
The substrate samples were flat-strips 30 x 100 x 2.5 mm in size with 2.5 mm sheet thickness. The 

first step before coating, surface cleaning, and preparation was precisely held to maintain good coat 
quality. The surfaces of samples were degreased with TCE (Trichloroethylene C2HCL3) for removing 
surface impurities, then roughened using a blasting procedure with Corundum 500 and blow pressure 5 
bar. This surface preparation procedure helped to activate the surface and offered an increased surface 
area for full adhesion of the sprayed particles. The main spraying parameters employed are shown in 
Table 2. 
 

Table 2 APS process parameters 

Parameter Value 
Gun F4 – MB 
Gas Ar /H2 

Main gas [Ar] ≈ 46 SLPM 
1.3 bar 

Secondary gas [𝐇𝐇𝟐𝟐] ≈ 8.1 SLPM 
1.5 bar 

Current 600 A 
64 V 

Spray distance 150 mm 
 

After coating the specimens by the prepared mixtures using the APS technique, the samples were 
subjected to metallurgical, morphological, mechanical (micro-hardness), and surface texture (Porosity 
and roughness) investigation. 
Standard procedures of specimen preparation for metallographic examination were employed according 
to the following sequence; the metallographic cross-section samples for coating structure evaluation 
were cut from the coated specimens using a wire cutting machine. Then, the specimens were mounted 
in conventional Bakelite hot mounting material and pre-ground on the water as a –lubricant. Silicon 
Carbide abrasive, grade “120” was used as abrasive media to remove about 0.5 mm of the material. 
Standard grinding and polishing operations were carefully applied for metallographic observations.  

The phase composition of composite coating was determined using an X-ray Diffractometer (XRD) 
(PANanalytical, X’Pert PRO) having Kα radiation with generator settings of 30 kV and 40 mA. 
Diffraction data were collected over a 2θ range of 5 ֯◌ - 100 ֯◌, with a step width of 0.02 ֯◌. The 
morphologies of as-sprayed coatings were examined using a Secondary Electron Microscope model FEI 
(Inspect S 50-Netherlands) with Energy Dispersive X-Ray Spectroscopy EDS attachment (Bruker AXS-
Flash Detector 410-M, Germany). The microhardness of the as-sprayed coating was measured on 
polished surfaces using a standard (HV-1000) micro-hardness tester at a load of 300 g and a dwell period 
of 10 s.  For each specimen, hardness tests were repeated ten times and the average value was recorded. 
The porosity percentage in the coatings was measured by using ImageJ analyzer software applying the 
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thresholding procedure. Surface roughness was measured using (TR 110) tester with five readings for 
each sample at least while recording the average values. 

 

3. Result and Discussion 

3.1 Powder microstructural analysis 
Figure 2a, b shows the SEM micrographs of the mixtures of Ni/Al (80/20) and Ni5Al (95/5) with pure 
Aluminum, respectively. All powders have uneven morphologies, elongated straight, twisted, or 
spheroidal shapes, and irregular particle sizes. The particle size of pure Aluminum powder is 22 to 84 
µm, while particle size of as-received Nickel-based powders Ni/Al (80/20) and Ni5Al (95/5) are 45 to 
88 µm, and 50 to 110 µm, respectively. This diversity of Aluminum particle size affects directly the 
composition of coating and the formation of intermetallic compounds [7]. 

 
 

3.2 XRD analysis of coatings 
Surveying previous studies have highlighted some important points to be considered before coating 
analysis. According to [7], the particle size of alumni affects directly the composition of coatings. NiAl 
formation is preferred with the aluminum size distribution 75 -100 m, whereas Ni3Al formation is 
preferred with small particles in the mixtures. Hussain in [37] stated that the ordered phases NiAl and 
Ni3Al appear at 50 and 75 atomic percent of Ni respectively based on the equilibrium phases diagram 
of Al-Ni. 

Figure 3.  shows the X-Ray Diffraction patterns of the coatings as deposited on stainless steel 
substrates. By comparing all the previously stated studies with the XRD analysis shown in Figure 2, two 
intermetallic compounds NiAl and Ni3Al appeared (most common phases in the phase equilibrium 
diagram of Ni-Al). The predominant phase was NiAl β-phase [23], which is found in all samples, even 
in the samples with the lowest Ni percentage ( samples: 1A and 1B), despite the above-mentioned fact 
that states NiAl formation in the range of atomic percentage of Ni which is 50, ssssssssssssin aligning 
with the same research criteria of applying Ni5Al and Ni/Al powders by APS, the XRD patterns of 
Rizaee et al. [20] and  Q. Jia et al. [45], respectively, revealed the formation of NiAl. Nevertheless, [20], 
[45] have stated the absence of Ni3Al ϓ-phase, which appears in samples 5A and 5B only. In these 
particular samples, the Ni-based powders are reached 50% of the coating. 

50 µm 

(a) (b) 

Figure 1SEM micrographs of (Metco™54-NS-1) Al powders with (a) Metco™404-NS, (b) Metco™450-NS 

50 µm 

Al 
Ni5Al 
(95/5)  

Ni/Al 
(80/20) 
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Pure Al and Ni appeared in all patterns, whereas Al could be considered the coating matrix, while 
the intensities of Ni increased directly with the increment of Ni-based alloys in the mixture. XRD 
patterns shown in Fig. 2.a. indicate the absence of Al2O3 for samples with Ni-5Alpowders as indicated 
by Rizaee [20] in his research of Ni5Al by APS, whereas samples with Ni-Al powder in Fig. 2.b. shows 
the same result of Al2O3 absence, except in sample 5A at 2θ~66.8 ֯◌, similar results were also illustrated 
by Kubatik research [17] with Ni10Al and Ni40Al by APS. It has been observed that NiO appears with 
the increase of the Ni-based percentage in samples 3B, 5A, and 5B. This mixture of metal and metal 
oxide could be harder than the metal coating itself but to a certain limit as stated in [2], [32]. 

3.3 Cross-sectional characterization of coatings 
Figure 3 shows cross-sectional microstructures of all samples that exhibit some typical APS features 
similar to other studies [17], [31], [32], [46]. The coatings contain lamellar or layered splat structures 
(as a consequence of molten particles' impact on the substrate), entrapped unmelted particles, micro-
pores, and oxides inclusions. Abu-Warda et al.  [10], developed an Al2O3-30(Ni20Al) layer on 304 
stainless steel with High-Velocity-Oxy-Fuel (HVOF) technique; the coating morphology was 
characterized by an irregular surface with quite similar morphology to our deposited layers with APS 
technique. 

Aluminum can be considered as the coating matrix for all samples, the existence of lamellar light 
gray splats can be overseen. It increased gradually by increasing the content of the Ni-based 
compositions that reached its highest percentage in samples (5A and 5B). Oxides (Al2O3 and NiO) are 
generally seen as dark, elongated phases that appear as strings in the coating cross-section, parallel to 
the substrate. Neither micro-cracks nor large pores exist in all samples. No evidence of micro-cracks to 
be observed, but almost all samples show a small number of micro-pores. Generally, increasing the 
percentage of Nickel-based alloys enhances the uniformity of coating. Coatings of samples 1B, 3B, and 
5B, Ni-based alloys were denser and bulkier, while they tended to be thinner and more flattened. All 
deposited APS layers had an average thickness of 350 ± 19 µm. 

3.4 Physical and mechanical properties of coatings 
Porosity and surface roughness of coating are connected, and both could be affected by different 
parameters, characteristics of powder, coating compositions, spraying distance, gun, or even substrate 
temperature [7]. Figure 4 shows that, with 15 cm spraying distance and different compositions of Ni-Al 
with pure Al, all samples had a normal range of porosity [47], although sample 5A has the maximum 
porosity percentage (7.443 %), It is still within the normal range from 40 to <1% [2]. Other literature 
has stated a similar porosity range. Javadi et al. [25] stated that the optimum spray distance for Ni-Al 
powders is 11 cm which resulted in 4.5% porosity of coating volume, Wang et al. [40] reported a low 
porosity percentage resulted for NiAl10.  Nonetheless, Kubatík et al. [17] produced more porous phases 
of NiAl10 and NiAl40 with 22 % and 17 %, respectively. 

Moreover, Figure 4 displays surface roughness which was approximately 6.242 ± 0.689 µm for all 
samples, where they are quite similar to the commercial alloy coatings [7]. 
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Figure 2 XRD patterns for coatings, (a) 1A, 3A, 5A; (b) 1B, 3B, 5B 
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Al 
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Unmelted 
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Figure 3 SEM micrographs of as-sprayed samples; (a) 1A, (b) 3A, (c) 5A, (d) 1B, (e) 3B and (f) 
5B 
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Figure 5,a shows micrograph of microstructure of APS coating and substrate with indenter 

indentation. The cross-sectional zone of the substrate near the deposited layer has a noticeable color 
change, it could be attributed to the heat developed through the APS process which affects directly the 
physical characteristics. Moreover, microhardness values of the substrate in this interdiffusion zone (50 
µm alongside coating) increase from 125 to 163 ± 8 HV as shown in Table 3, which is considered as 
proof positive for good interaction between substrate and coatings layers. Microhardness measurements 
of all samples are listed in Table 3 Both values of substrate and coating layers are included in Figure 
5,b.Despite the increment in microhardness of this zone of interdiffusion, all samples exhibit different 
behavior, which is affected directly by the percentage of nickel [48]. Microhardness values of samples 
1A and 1B are slightly higher than commercially pure Aluminum coating [49]. Therefore, the 
microhardness of both mixtures with the amount of Ni-based alloys below 30% is not a recommended 
type of as-sprayed coating for an application that requires adequate mechanical performance. By 
increasing the amount of Nickel-based alloys above 30 %, microhardness values reached an average of 
164.5 HV with a standard deviation of 10.31 HV [21], [50]. It could be observed that the microhardness 
of the six different coatings was enhanced obviously by increasing the amount of Ni-based alloys in 
mixtures above 30%. 
 

Table 3 Microhardness measurements of coatings and substrate 

Sample No. Interdiffusion Area (Substrate) Coating layer 
1A 155 74 
1B 165 81 
3A 158 149 
3B 163 165 
5A 167 167 
5B 170 178 
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Figure 4 Coating properties; Porosity and Surface Roughness 
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4. Conclusion: 
This work has investigated the coating of stainless steel 304 by APS using Al, Ni/Al, and Ni5Al. Several 
observations were recorded as follows: Deposition of Aluminum powder separately mixed with Ni-Al 
and Ni 5Al results in a dense coat with no cracks or other major defects. The sample of Ni/Al and pure 
Al(5A) with 50% each has resulted in the highest porosity percentage which is still in the normal range 
stated in previous literature. Microhardness of the substrate (interdiffusion zone, 50 µm alongside 
coating) extensively increase compared to the average value of 304 SST microhardness. This is due to 
heat developed in the APS process. The measured microhardness of proposed coatings is affected 
directly by the percentage of Ni-based alloys in mixtures. Sample with Ni-based alloys in mixtures less 
than 30% have shown poor results. Formation of intermetallic compounds such as NiAl is inevitable in 
all samples, despite the amount of Ni-based alloys in mixtures, or even the atomic percentage of Ni; 
besides the existence of Ni3Al depends only on increasing the percentage of the Ni-based alloy to 50 % 
percent in the mixtures. 
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