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Abstract. The connecting rod is an important component of the engine. It conveys the kinetic 
energy from the piston to the crankshaft. All cars and aircraft engines contain at least one 
connecting rod, which differs from one motor to another in terms of length, size and shape. 
Hence, it is subjected to massive alternating load.  This research aims to improve the connecting 
rod design by reducing its mass without sacrificing durability and safety especially for aircraft 
applications. Therefore, a static stress analysis is carried out on forged steel connecting rod using 
ANSYS APDL. Geometric modelling of the connecting rod was created using ANSYS APDL. 
Additionally, von-Mises stress and strain, principal stresses and strains, shear stress and the 
deflation results of the connecting rod are investigated. The results showed a great opportunity 
for mass weight reduction. Thus, a dimensional structural mass optimization was performed. The 
optimization results were promising, which reduced the mass by 55.13% (in the tensile case) and 
56.7% (in the compression case) from the initial design. Therefore, the efficiency of aircraft 
engine can be maximized.  

1. Introduction: 
One of the most critical parts of the internal combustion engines is the connecting rod which connects 
the piston to the crankshaft. In general, connecting rods are made of steel for vehicles and aircraft 
engines. But, it can be made from different materials such as Titanium for high-performance engines, or 
Aluminum (for the ability to absorb high impact and lightness at the expense of durability) or Cast iron 
for applications such as motor scooters. The connecting rod is under reciprocating load and due to this 
is under an incredible tensile and compression stress at every rotation. One of the most common engine 
failure cases is the connecting rod failure, which can result from a physical defect in the rod, lubrication, 
or bolt defects. Often these failures happen at competitive automobile events. But, not on production 
cars during normal daily driving, which rarely occurs, due to the greater safety factor in parts production, 
and quality control is often more systematic [1, 2]. The demand for robust and alternative materials has 
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grown in the industry fields. A technique of hybridization involves a combination of two or more 
reinforcements to obtain better mechanical properties, such as strength, stiffness, higher strength to 
weight ratio, etc. And by combining two or more low-cost materials with different properties, the hybrid 
materials are formed. These advanced materials are used for high-strength; light-weight applications in 
automobiles, aerospace, etc. several techniques are used to create hybrid metal matrix composites such 
as stir cum squeeze, casting process, and stir casting process [3]. 

 In the early years, connecting rod optimization has started. Consumers are looking for more robust 
and safer products at a reasonable price. However, the industry is looking for less time and cost 
production. The best values for these variables that achieve all these constraints can be determined by 
the optimization process, making it essential and primarily in the automotive industry. The car 
performance is affected by the design and weight of the connecting rod. Thus, it also affects car 
manufacture credibility. By considering the weight reduction structural factors during optimization, the 
component can be lighter and maintain higher strength, which will create striking success in the 
automotive and manufacturing industry. The benefits of connecting rod optimization go back to the 
consumers themselves. Among the key goals are to boost the engine's efficiency and enhance the product 
that guarantees human protection.[4]. The connecting rod can bear both static and dynamic loads. The 
compression and tensile stresses on the connecting rod are generated respectively by the pressures 
exerted by the combustion gases and the components of the inertial movement [5, 6]. In case of faulty 
connection or fatigue, connecting rods fail. Also, connecting rods may fail due to failure of loading, 
irregular adjustments of screws [7]. Connecting rod must resist the applied tensile stresses. consequently, 
some design techniques, material selection, and fatigue tests have been presented [8].  

Failure of connecting rod is attributed to the availability of strength that is required to withstand the 
applied stresses. But by extending the life cycle by increasing the strength we can overcome it. Sathish 
et al.[1], performed static stress analysis based on the finite element method to AA2014, AA6061 and 
AA7075 aluminum alloy materials using ANSYS, and found that the AA2014 is the less weight and 
better stiffness which has the minimum values of equivalent stress, equivalent elastic strain, and the total 
deformation.  Gopinath et al. [4], performed static analysis based on finite element analysis to forged 
steel, aluminum and titanium connecting rod. Further, a weight reduction by topology optimization 
technique on forged steel connecting rod is carried out. Rezvani et al. [9], studied the catastrophic joint 
deformation failure of the 645E3B diesel engine connecting rod. The findings confirm that the failure 
causes are assumed to be the hydro-lock condition due to the splash of water within the ignition chamber 
and the higher-pressure proportion. Abad et al. [10], performed dynamic load analysis as well as 
optimization of connecting rod. Lee et al. [11], investigated the buckling sensitivity by reducing the 
connecting rod weight. And found that in buckling, the stress sensitivity is more than or equal to fatigue 
and yield stress. Kreculj et al. [12], analyzed the impact load effect on the structure of aircraft. The 
accumulated impact damage and the impact damage effect are discussed. Additionally, Ranjan Pani et 
al. [13], performed a theoretical and a numerical buckling failure analysis and material selection for the 
645E3b engine connecting rod. The theoretical part is taken to calculate the buckling load and stress 
using the merchant-Rankine approach and the slider-crank mechanism approach. The numerical analysis 
is done by ANSYS to validate the results. And conclude that, a proper buckling safety factor should be 
taken to avoid the buckling failure. The Al-2024-T6 is not ideal for heavy-duty diesel engines due to the 
lower buckling strength compared to 42CrMo4. Furthermore, Sharma et al. [14], carried out analysis 
and modeling of carbon steel and aluminum boron carbide connecting rod and found that the nearest 
working factory of safety to the theoretical factory of safety is the aluminum boron carbide connecting 
rod which has 48.55% more stiffness and 10.35% less stress.  Pathade et al. [15],  performed a finite 
element analysis (FEA) on the connecting rod using both ANSYS and pro-wild fire software and found 
that the small end stresses are greater than in the bigger end. In addition, concluded that the chance of 
the connecting rod failure may be at the fillet section of both ends. Bansal et al. [16], carried out a 
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dynamic and a static FEA on aluminum alloy connecting rod. The static load analysis preformed for 
stress analysis, optimization and to determine the connecting rod von-Mises stresses. Ahmed et al. [17], 
carried out FEA on a connecting rod with three aluminum alloys materials (AA2014, AA7075, and 
AA6061) and carbon fiber. Bin et al. [18], performed FEA on a connecting rod to investigate the stress 
distribution and fatigue life cycle. Gautam et al. [19],  carried out a static stress analysis based on FEA 
on SS304 connecting rod used in Cummins NTA885BC engine. Also, He et al. [20], carried out failure 
analysis of a diesel engine connecting rod. The reason for the connecting rod's failure was the high-stress 
concentration/high-stress level and lower yield strength. Londhe et al.[21], performed FEA and an 
experimental study of the connecting rod and found that both the experimental and the simulation results 
of the fatigue and static strain matched, thereby validating the FEA. Moreover, Rabb [22],  studied the 
fatigue failure of the connecting rod.  Similarly, Rakic et al. [23], predicted the failure of a connecting 
rod based on the FEA, which showed the concentration of maximum stress applied at position of original 
fracture. Witek et al. [24], conducted  stress analysis on connecting rod using ANSYS. They observed 
that maximum principal stress can be found at zone near the bolt hole where the crack originated and it 
exceeded the fatigue limit of 42CrMo4 steel. Seralathan et al.[25], performed static stress analysis based 
on the FEA to different types of materials using ANSYS finite element code and found that, the A356-
5%SiC-10% Flyash stir cum squeeze casting material has the minimum values of equivalent stress, 
equivalent elastic strain, and total deformation. A lot of research deals with weight loss [26, 27].  

In this paper, the structural design optimization to reduce the weight of forged steel connecting rod 
in aircraft engines using a finite element method is performed. The connecting rod model is created 
using ANSYS APDL. The von-Mises stress, strain, shear stress and the deflation results of the 
connecting rod are investigated. 

2. Finite element modeling and optimization
The FEA is widely used for solving different problems of engineering and predicting the behavior of
structural elements as in [28-33]. FEA is the most significant applied technique for analyze engineering
structures according to specific design considerations. It dives the real object into a large number small
units called "elements" for dynamic and static analysis of simple to complex models in the presence of
varied design constraints. Further checks could be done to improve a design for optimum performance
and life about design failure [34]. The components of the connecting rod are illustrated in Figure 1.
Geometry and dimensions of the connecting rod are shown in Figure 2. The model was crated and
mapped in ANSYS software package by using ANSYS Parametric Design Language (APDL). The
accuracy of the results is controlled by the element type and meshing of the model, which is responsible
for dividing the model into a number of small elements. The smaller the elements size the more accurate
the results. In the present paper, the model is meshed using Plane183 element as shown in Figure 3. The
total number of elements and nodes are (1157) and (3949), respectively. The mechanical properties for
the Forged steel are as listed in Table 1.
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Figure 1: Connecting rod components. 

 

Figure 2: Connecting rod geometry and dimension (all dimensions are in mm). 

Table 1:  Mechanical properties of Forged Steel. 

Young’s Modulus, E 200GPa 
Poisson’s ratio, υ 0.3 
Density, ρ 7850 Kg/m3 
Shear Modulus, G 78 GPa 
Tensile Strength, σU 892.63 MPa 
Yield Strength, σy 648.06 MPa 

Big end 

Small end 

I-Beam

Cap 

Nuts 

Bearing insert Rod 

Ø10.5 

148.5 

C 

Ø 28 

R11

Rc1 Rc2 

R2 

(a) (b) 
Figure 3: Meshing and element type (a) Connecting rod mesh and (b) the geometry of plane183 

element. 
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2.1 Boundary condition 
The connecting rod is subject to two types of loads, the first being in compression and the other 
being in tension. In the tension case, the load is applied on the right half of small end at 120 degrees 
and the big end is fully fixed as shown in Figure 4 (a). In the compression case: the load is applied on 
the left half of the small end at 120 degrees and the big end is fully fixed as shown in Figure 4 (b).  
The chosen pressure value is 24.2 MPa [35]. 

(a) (b) 
Figure 4: Boundary condition of connecting rod (a) for tension (b) for compression. 

2.2 Optimization statement 
Design Optimization is a crucial mathematical method used in engineering and many other fields. 
Generally, it is a process of finding the optimal value of one or many design parameter that meets the 
system requirement and achieve the best performance [36]. Hence, the design optimization of the 
connecting rod is to minimize the mass of the connecting rod while bearing the compressive and the 
tension load acting on it [4]. The design optimization flow chart is shown in Figure 5. 

2.3 Objective function 
The objective function f(x) is the parameter that desired to be minimized or maximized. In this paper 
the objective function is to minimize the connecting rod mass: 

𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑚𝑚 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑡𝑡𝑚𝑚𝑚𝑚𝑐𝑐 𝑟𝑟𝑐𝑐𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐾𝐾𝑐𝑐) 



ASAT-19 2021
IOP Conf. Series: Materials Science and Engineering 1172  (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1172/1/012001

6

    Figure 5: Design optimization flow Chart 

2.4 Design constraints: 
Design constraints are the range that parameters cannot go over or below it to avoid failure and meet the 
requirements. In this paper, constraints are characterized into two types: material and side constraints. 
Material constraints: 
To avoid connecting rod failure the following constraints must be satisfied:  

1- The deflection (𝜹𝜹 ) of the connecting rod must not exceed the allowable deflection (𝜹𝜹𝒂𝒂 )
Mathematically:

𝛿𝛿 < 𝛿𝛿𝑎𝑎 
2- The von-Mises stress (𝝈𝝈)  must not exceed the allowable stress (𝝈𝝈𝒂𝒂) Mathematically:

𝜎𝜎 < 𝜎𝜎𝑎𝑎 

Update 

Strat 

Define Optimization Problem 

Objective Function Constraints Design Variable 

Building Initial Design Model 

Applying FEA using ANSYS APDL 

Applying Static Analysis 

Geometry Optimization 

Converged? 

Optimum Design Stop 

Yes 
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Side constraints: 
Side constraints are identified as the range limits of the dimensions parameter as listed in the Table 2. 

Table 2: Side Constraints 

Lower limit Upper limit 

Outer big end (𝑅𝑅1) 𝑅𝑅1𝐿𝐿 𝑅𝑅1𝑈𝑈 
Outer small end (𝑅𝑅2) 𝑅𝑅2𝐿𝐿 𝑅𝑅2𝑈𝑈 
Big circle (𝑅𝑅𝑅𝑅1) 𝑅𝑅𝑅𝑅1𝐿𝐿 𝑅𝑅𝑅𝑅1𝑈𝑈

Small circle (𝑅𝑅𝑅𝑅2) 𝑅𝑅𝑅𝑅2𝐿𝐿 𝑅𝑅𝑅𝑅2𝑈𝑈

Center distant between big and small circle (𝐶𝐶) 𝐶𝐶𝐿𝐿 𝐶𝐶𝑈𝑈 
Connecting rod thickness (𝑡𝑡) 𝑡𝑡𝐿𝐿 𝑡𝑡𝑈𝑈 

3. Results and discussion
Based on Finite element analysis (FEA) and ANSYS Parametric Design Language (APDL), dimensional
structural mass optimization is performed on forged steel connecting rod for aircraft engines under 24.2
MPa tension and compressive pressure.

3.1 Real model results 
Numerical static stress analysis of forged steel connecting rod under 24.2 MPa tensile and compression 
pressure is obtained for a real model.  Additionally, von-Mises stress, shear stress, total deformation, 
von-Mises strain and principal stresses and strains of the connecting rod are obtained in both tension and 
compression cases as shown in Figure 6 and Figure 7, respectively.  

(a) (b) 

(c) (d) 
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(e) (f) 

  
(g) (h) 

  
(i) (j) 

 

Figure 6: Connecting rod tensile case results of (a) von-Mises stress, (b) Total deformation (c) Shear 
stress, (d) von-Mises strain, (e) 1st Principal stress (f) 2nd Principal stress (g) 3rd Principal stress and (h-

j) 1st, 2nd and 3rd Principal strain. 

 

 

  
(a) (b) 
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(d) (c) 

  
(d) (e) 

  
(f) (g) 

  
(h) (i) 

Figure 7: Connecting rod compression case results of (a) von-Mises stress, (b) Total deformation, (c) 
Shear stress, (d) von-Mises strain, (e) 1st Principal stress (f) 2nd Principal stress (g) 3rd Principal stress 

and (h-j) 1st, 2nd and 3rd Principal strain. 

3.2 Optimized model results  
The aim of the optimization is to reduce the connecting rod mass while meeting all the material and 
the side constraints. Numerical static stress analysis of forged steel connecting rod under 24.2 MPa 
tensile and compresion pressure is performed for the proposed optimized model. Also, von-Mises 
stress, shear stress, total deformation, von-Mises strain and prrincple stresses and strains of the 
connecting rod are obtained for the proposed optimized model in both tension and compression cases 
as demonstrated in Figure 8 and Figure 9 repectively. Detailed numerical results for real and 
optimized model can be summarized in Table 3 
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(a) (b) 

(d) (c) 

(d) (e) 

(f) (g) 
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(h) (i) 
Figure 8: Connecting rod optimized (tensile case) results of (a) von-Mises stress, (b) Total 

deformation, (c) Shear stress, (d) von-Mises strain, (e) 1st Principal stress (f) 2nd Principal stress (g) 3rd 
Principal stress and (h-j) 1st, 2nd and 3rd Principal strain. 

(a) (b) 

(d) (c) 
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(d) (e) 

(f) (g) 

(h) (i) 
Figure 9: Connecting rod optimized (Compression case) results of (a) von-Mises stress, (b) Total 

deformation, (c) Shear stress, (d) von-Mises strain, (e) 1st Principal stress (f) 2nd Principal stress (g) 3rd 
Principal stress and (h-j) 1st, 2nd and 3rd Principal strain. 

Table 3.Detailed numerical results for real and optimized model 

von-Mises 
stress 
(MPa) 

Deflation 
(mm) 

Shear 
stress 
(MPa) 

von-Mises 
elastic 
strain 

Principals 
stresses 
(MPa) 

Principals 
strains 

R
ea

l m
od

el
 

Te
ns

io
n 

ca
se

 Max. 
Value 148.81 0.04 37 7.5e-4 -- -- 

Position small end small end I-beam small end -- -- 
Min. 
Value 2×10-3 0 -36.75 4.04×10-8 -- -- 
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Values -- -- -- -- 
158.1, 

37.91 and 
-78.55

7.6×10-4, -
2.13×10-4 

and -3.6×10-

4

Figure 6 (a) 6 (b) 6 (c) 6 (d) 6 (e-g) 6 (h-j) 

C
om

pr
es

si
on

 c
as

e 

Max. 
Value 77.91 0.03 26.53 3.9×10-4 -- -- 

Position I-beam small end I-beam I-beam -- -- 
Min. 
Value 3.5×10-3 0 -26.53 5.4×10-8 -- -- 

Values -- -- 
58.3, -
27and -
78.55 

3×10-4, 
1.2×10-4 and 

-4×10-4

Figure 7 (a) 7 (b) 7 (c) 7 (d) 7 (e-g) 7 (h-j) 

O
pt

im
iz

ed
 m

od
el

 

Te
ns

io
n 

ca
se

 

Max. 
Value 215.74 0.07 64.4 1.1e-3 -- -- 

Position small end small end small 
end small end -- -- 

Min. 
Value 1.3×10-4 0 -63.3 6.53×10-10 -- -- 

Values -- -- -- -- 
216.8 , -

26.7  and -
86.5 

1.1×10-3, 
3.14×10-4 

and -4.2×10-

4

Figure 8 (a) 8 (b) 8 (c) 8 (d) 8 (e-g) 8 (h-j) 

C
om

pr
es

si
on

 c
as

e 

Max. 
Value 154.2 0.065 26 7.7e-4 -- -- 

Position I-beam
middle of 

connecting 
rod 

small 
end I-beam -- -- 

Min. 
Value 4 0 -23 5×10-10 -- -- 

Values -- -- -- -- 
34.71, 

-6.42 and
-155.2

2.4×10-4, 
2.24×10-4 

and -
7.73×10-4 

Figure 9 (a) 9 (b) 9 (c) 9 (d) 9 (e-g) 9 (h-j) 

4. Comparison between real and optimized model
From the previous results, structural optimization significantly minimizes the mass of the connecting
rod by 55.13 % in the tensile case and 56.7 % in the compression case, which in turn reduces the
production time and cost. Table 4 clarifies a comparison between the real and the optimized results of
the connecting rod.

Table 4: Comparison between the real and optimized results. 

Parameter Real Model Optimum Model 
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Tensile Compression Tensile Compression 
1 von-Mises Stress (MPa) 148.81 77.91 215.7 154.2 
2 Total Deformation (mm) 0.04 0.03 0.069 0.065 
3 Factor of Safety (F.S) 4.35 8.32 3 4.2 
3 Mass (Kg) 0.64 0.29 0.28 
4 Volume (mm3) 81112 36391 35233 
5 Weight reduction (%) - 55.13 56.7 
 

5.  Conclusion 
In this paper, a static stress analysis was performed on forged steel connecting rod in aircraft engines 
under 24.2 MPa tensile and compression pressure using ANSYS APDL. The maximum and the 
minimum of von-Mises stress and strain, the principal stresses and strains, shear stress, and the deflection 
were investigated. The results show a significant opportunity for weight reduction optimization. Thus, a 
dimensional structural mass optimization was carried out to minimize the connecting rod's mass after 
performing static stress analysis. That, in turn, will enhance the performance of aircraft engines.  The 
optimization results show notable weight reduction of the connecting rod by 55.13 % (in the tensile case) 
and 56.7 % (in the compression case) from the initial design. However, fatigue analysis for a connecting 
rod will be considered in further work.  
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