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Abstract. Scarf adhesive joints (SAJs) have attracted an increasing attention in 

joining/repairing of carbon-fiber reinforced epoxy (CFRE) composite structures due to their 

zero eccentricity, which provides better aerodynamic surfaces. This study evaluated for the first 

time, the performance of SAJs in CFRE composites under thermo-mechanical impact loads. 

The adhesive was modified with optimum percentage of multi-walled carbon nanotubes 

(CNTs). The impact tests were performed at room temperature of +25C, +50C and +75C. 

The residual flexural properties of the unfailed impacted joints were measured using three-

point bending test. Results from impact tests at temperature of 25C, 50C and 75C showed 

improvement in the impact bending stiffness of the modified SAJs with CNTs by 8.3%, 7.4% 

and 11.8% and maximum contact force by 15.6%, 21.3% and 18.9%, respectively. The energy 

at failure of the CNT-SAJs was increased by 15.2% and 16.4% respectively at temperatures of 

25C and 50C. At test temperature of 75C the SAJs have hysteresis load-displacement 

behavior and energy-time curve with rebound energy of 35% and absorbed (damage) energy of 

65%. The residual flexural strength of the modified and unmodified SAJs is 98.2% and 86.1% 

respectively, while their residual moduli have remarkable decrease to 71.7% and 81.3%.  

 

Keywords: Scarf adhesive joint, Multi-walled carbon nanotubes, Thermo-mechanical impact 

loads, Impact bending stiffness, Absorbed energy, Bending tests. 

1.  Introduction 

Fiber-reinforced polymer (FRP) composites offer a number of distinct advantages compared to 

conventional engineering metallic materials, such as high specific strength and stiffness, excellent 

vibration damping capacity, superior corrosion and fatigue resistance. Accordingly, they have been 

extensively used as structural components in aircraft and space applications as well as for automotive 

parts. In these applications adhesive joining/repairing cannot be avoided for assembly and repair 

purposes of the structure components [1]. Scarf adhesive joints (SAJs) have attracted considerable 

attention because of their zero eccentricity along the load path and provide better aerodynamic 

surfaces [2] relative to other bonded joints. The demand for improving the performance of the SAJs in 

composite structures is required forever and is the subject of the current study. 

mailto:khashabu@zu.edu.eg
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The present paper is a continuation of previous work of Khashaba et al. [3-8], with the objective to 

obtain most of the mechanical properties of the SAJs in carbon fiber reinforced polymer (CFRP) 

composites modified with different nanofillers. Frist, the optimum weight percentage of the different 

nanofillers was determined experimentally [3] and used to fabricate SAJs with different scarf angles 

[4,5]. The SAJs were subjected to tensile loads at room temperature, hot and moist conditions [4,5]. 

The measured values of the ultimate tensile strength agreed well with that predicted using three-

dimensional finite element analysis models. Fatigue analysis was studied through different 

relationships, which include S-N curves [6-8], stiffness-N curves and load-displacement hysteresis 

loops [7]. Statistical and reliability analysis were conducted on fatigue life data to estimate the safe 

fatigue life at different reliability levels [6,7].  

Any selection of joint characteristics for optimal design should be based on trade-of between the 

different mechanical properties. During service life, the structural components were subjected to low-

velocity impact loads, like tools drop during maintenance processes, hammer and tire debris impact. 

These low-velocity impact loads can induce degradation of the composite structure, which sometimes 

is hard to detect by visual inspection. Accordingly, the main objective of the present study is to 

investigate the performances of the SAJs modified with CNTs in CFRE composites under bending and 

thermo-mechanical impact loads, which are not investigated yet.  

As there is no standard specification for testing the SAJs [9], care should be taken when describing 

the gain/loss in the mechanical properties relative to the scarf angle. Jen [10] defined the scarf angle as 

the angle between the plane normal to the joint axis and the bonding line. While the scarf angle in the 

present study and the other researchers cited in this paper, was defined as the angle between the plane 

parallel to the specimen axis and the bonding line.  
At high temperature, the difference in the coefficients of thermal expansion of the reinforcing 

carbon fibers, CNTs and the adhesive material could be significant enough to cause microcracks 

initiation in the tapered adherends as well as interfacial shear failure before applying the impact loads. 

Nguyen et al. [11] studied the effect of test temperatures on the tensile properties of steel/CFRP 

adhesively-bonded double strap joints. They have reported that the joint failure mode changed from 

adherend failure to debonding failure as the temperature approached the glass transition temperature of 

the adhesive. In addition, the ultimate load and joint stiffness decreased by about 15%, 50% and 80% 

when temperatures increased by 0C, 10C, and 20C above Tg, respectively. Through the literature 

review, the authors found that, the properties of the SAJs under thermo-mechanical impact loads has 

not yet been reported, which is the main reason that motivated the authors to perform this study.   

Improving the impact properties of the scarf adhesive joints in composite structures via 

incorporation of CNTs into the adhesive material has not yet fully explored in the literature. However, 

there are a few available data on the performance of the scarf joints bonded with neat adhesives 

[12,13] and modified adhesives with micro-fillers [14,15] under mechanical impact loads. Kim et al. 

[12] studied the impact properties of the composite laminates and composite scarf repairs subjected to 

in-plane tensile loading. They have reported that pre-strain has a negligible effect on the delamination 

size in composite laminates for the given impact energy of 8 J. On the other hand, a mixed damage of 

adhesive disbonding and adherend delamination was observed and increases significantly with 

increasing pre-strain levels. Delamination in composite adherends has been found to reduce the size of 

adhesive disbonding. Sato and Ikegami [13] found that The SAJ is the most effective shape to 

minimize the stress concentration in the adhesive layer under static loading as well as under dynamic 

loading compared with tapered lap joints and single lap joints.  

Ali et al. [14] found that incorporation of microparticles led to a significant improvement of the 

impact load bearing capacity of the scarf joints and reduced the extent of the damage area. Recently, 

Ozdemir and Oztoprak [15] reported improvements in impact resistance, at room temperature, of 

single-lap composite joints bonded by fiber-reinforced polymer. However, the tensile failure load of 

the modified joints decreases with the increasing test temperature from room temperature to 75°C.  

Introducing of CNTs into the adhesive materials can play contrary roles in deciding the 

performance of composite bonded joints especially at higher temperatures near the glass transition 
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temperature. CNTs can improve the mechanical properties of the epoxy adhesive as a reinforced 

material as well as improving their glass transition temperature [16-19] and thus, delay their softening 

temperature as well as thermal fracture. However, Tg is not a material property and dependent CNTs 

(raw or functionalized), wt% of CNTs, the measurement technique and the experimental conditions 

used (e.g. heating rate, sample size). Gojny et al. [19] found improvement of 8C in the Tg of the 

modified epoxy with same wt% of CNT (0.5 %) and dispersion processing technique (ultrasonic 

dispersion) of the present study. On the other hand, CNTs can improve the thermal conductivity of the 

adhesive layer, which can leads to rapid distribution of the temperature with more softening and thus, 

reducing the joint strength. The thermal conductivity of multi-walled CNTS is  (= 3000W/mK[20,21]) 

very high compared with epoxy adhesive (0.3 W/mK[20]) and some famous metals such as Aluminum 

(= 210 W/m°C). Korayem et al. [16,17] reported that incorporation of 3.0 wt% CNTs into epoxy 

adhesive of CFRP-to-steel double strap joint increases the glass transition temperature by 30% and 

thus, the bond strength was increased at moderately elevated temperatures by about two fold compared 

to neat epoxy. Han and Fina [22] found that the aggregation of CNTs into bundles or ropes in the 

sonicated polymers and the high interfacial thermal resistance caused by the phonon mismatch are 

critical issues accompanied with CNTs as thermally conductive fillers in polymer composites. 

Therefore, in this study, the parameters of the sonication process were carefully selected to achieve the 

best dispersion of CNTs in the adhesive material.  

Improving the impact performance of the SAJs via introducing nanofilers has not studied yet. 

Accordingly, the main objective of the present work is to evaluate the performance of SAJs modified 

with multi-walled carbon nanotubes (CNTs) under flexural and thermo-mechanical impact loads. 

Carbon fiber reinforced epoxy (CFRE) composite adherends were tapered at 15 and adhesively 

bonded using Epocast 50-A1/946 adhesive, which primarily developed for joining and repairing of 

composite aircraft structural components. The SAJs were modified with the optimum percentage of 

0.5 wt% CNTs, which was carefully dispersed into the adhesive material using Ultrasonic Processor. 

The performance of SAJs was measured under thermo-mechanical impact loads. Drop weight impact 

tests were performed at room temperature (25C), +50C and +75C temperatures in accordance with 

ASTM D 7136. Three-point impact tests were performed to characterize the residual strength after 

impact of the joints and the results were compared with the flexural strength of fresh specimens. The 

scarf adhesive joints (SAJs), which are bonded by neat epoxy (NE) and multi-walled carbon nanotube 

(MWCNT), will be designated as NE-SAJs and CNT-SAJs respectively. 

2.  Experimental Work  

2.1.  Materials 

Multi-Walled Carbon Nanotubes (CNTs) with outer diameter less than 8 nm, inner diameter in the 

range of 2-5 nm, and length of about 30 μm were used to modify the epoxy adhesive. The CNTs were 

manufactured by Timesnano, Chengdu Organic Chemicals Co. Ltd, Chinese Academy of Sciences 

with purity higher than 95 wt%. The adhesive was manufactured by Huntsman Advanced Materials 

Americas Inc., for joining and repairing of composite aircraft structures. The glass transition 

temperature of the Epocast 50-A1/946 adhesive system, as provided by the manufacturer, is 72C. The 

adherends of the SAJs were cut from carbon fiber reinforced epoxy (CFRE) composite laminates with 

an area of 500x500 mm2 and thickness of 5±0.1 mm. The composite laminates were manufactured 

from 25 layers of plain woven carbon fiber fabrics (T300-3k, 200 g/m2) and epoxy matrix (YPH-120-

23A/B, manufactured by CHN Carbon Fiber Technology Co. Ltd) using prepreg technique with a 

curing cycle of 70℃ for 2.5 hours. The adherends were bonded using a two-component thermoset 

epoxy adhesive, Epocast 50-A1/946, with a mixing ratio (by weight) of 100:15. The mechanical 

properties of the CFRE adherends are illustrated in Table 1. 
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Table 1. Mechanical properties of the adhesives and  

plain woven carbon fiber composite adherends [5]  

2.2.  Fabrication of the SAJs 

The fabrication procedures of the scarf adhesive joints (SAJs) were reported earlier in details by 

Khashaba et al. [5-7] and are summarized in the coming subsections.  

2.2.1.  Preparation the tapered adherends. The CFRE laminates (500x500 mm2) were cut into 

500x125 mm2 adherend panels using diamond bench saw. Scarf angle of 15o was machined into the 

longest dimension of the adherend (500-mm), Fig. 1a, using a 46-grit Al2O3 vitrified cut-off wheel, 

which result in good surface finish [23]. As the tapered section has lower stiffness toward the tip, a 10 

mm-thick steel back plate was used to support the panel, during tapering process, against out-of-plane 

deflection [5]. The tapered surfaces were cleaned by wiping them with acetone-dampened cloth as 

recommended by ASTM D 2093. This step is important for removing any contaminations from 

loosely held debris that can result from the cutting process. To ensure drying of the mating surfaces, 

the tapered sides were left upwards for 2h in a clean, dust-free area.   

2.2.2.  Preparing the adhesive materials. The optimum weight percentage of 0.5wt% CNTs was 

determined previously by Khashaba et al. [3] and used in this study to enhance the adhesive layer 

using Ultrasonic Processor with a maximum power of 750 W. The sonication amplitude was fixed at 

375W (50% of the maximum apparatus power) for 30 min in order to reduce the damage of CNTs 

during dispersion in a volume of 150 cm3 of the epoxy adhesive. These sonication conditions were 

corresponding to an energy density of 4500 W·s/ml, which is suitable for dispersion of CNTs in the 

Epocast adhesive [5,6]. The mixture's temperature was kept less than or equal to 50C via temperature 

probe, which is fixed at the maid distance between the sonicator probe (25-mm diameter) and the 

beaker wall. Sonication at temperature of about 50C reduces the mixture viscosity, which yields 

better dispersion of CNTs in the epoxy adhesive without degrading their mechanical properties. The 

mixture was evacuated to remove any air bubbles at 40°C and pressure of -133 Pa for one hour using 

drying vacuum oven model DZF-6050. The well dispersed CNTs in the adhesive epoxy were 

confirmed by Khashaba et al. [3] through scanning electron microscope image analysis. The 

mechanical properties of the Epocast epoxy adhesive and the modified adhesive with 0.5 wt% CNTs 

are illustrated in Table 1. 

2.2.3.   Assembly procedures of the SAJs. The neat and the modified Epocast adhesive were 

employed to fabricate the SAJs in CFRE composites with a bondline thickness of 0.25 mm. A pair of 

foil gages was bonded at the ends of the tapered surface of one adherend to maintain a constant 

bondline thickness of 0.25-mm as shown in Fig. 1a. The hardener 946 (epoxy Part-B) was gradually 

added to Epocast 50-A1 adhesive (epoxy part-A) and manually stirred for 5 minutes. The modified 

Epocast 50-A1 adhesive with CNTs should be cooled to room temperature after the evacuation (at 

Properties 

Materials 

NE 
0.5 wt% 

MWCNT/E 

CFRE 

adherends 

Tensile strength (MPa) 75.53 81.21 895.28 

Tensile modulus (GPa) 3.43 4.06 81.66 

Poisson’s ratio 0.32 0.313 0.052 

Shear strength (MPa) 50.71 53.51 145.41 

Shear modulus (GPa) 1.45 1.60 6.94 
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40C) and before adding the hardener. This is because the Epocast 50-A1/946 has low gel time (20 

min at 25°C) and accordingly, the temperature of the evacuated mixture (40C) leads to decreasing the 

gel time as well as accelerating the curing process. In addition, it increases the possibility of voids as a 

result of increasing the exothermic heat of curing reaction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Images of: (a) The machined adherends (500x125 mm), and 

 (b) front and top views of the SAJ with 15o scarf angle. 

 

Subsequently, the adhesive was spread on both mating tapered surface of the parent adherends. The 

mating surfaces were accurately assembled on waxed glass plate. The adherends were prevented from 

slipping on each other using two 3-mm thick glass strips. These strips are bonded on the glass plate 

ahead of the non-tapered adherend ends. A second waxed glass plate was placed on the top surface of 

the assembled adherends. To squeeze out the excess adhesives, the assembly was compressed by dead 

weights of 50 kg, which were distributed on the upper glass plate. The assembly was kept for 10 days 

at 25C aiming at complete curing of the adhesive material.  

The final length (L) of the assembled panels is given by:  

 
 tansin

)125(2
tt

L a −+=  (1) 

where t is the adherend thickness (5 mm), ta is the adhesive thickness (0.25 mm), and  is the scarf 

angle, Fig. 1. The length of the SAJs with scarf angles of 15 is 232 mm. A computer-controlled 

abrasive waterjet machine was used to cut the bonded panels into the SAJs with dimensions of 

232x24x5 mm3, Fig. 1b. The abrasive waterjet technique is selected to avoid the harmful effect of the 

induced temperature in traditional cutting processes of FRP composites. 

2.3.  Impact Tests 

The fabricated SAJs were tested against low-velocity impacts using a drop-weight testing machine 

(model CEAST 9340), Fig. 2a. The impact tests were performed at room temperature (RT) of 25C, 

and at hot temperatures of 50C and 75C according to ASTM D 7136. The selected test temperature 

of 50°C simulates the summer midday temperature of some countries. Performing impact tests at 

 

(a) 
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temperature of 75C was used to investigate the possible effects of temperature rise close to the 

adhesive Tg. The temperature was controlled using a thermal conditioning chamber of the drop-weight 

testing machine, figure 2. The hot air inside the chamber being circulated and distributes by a fan, 

figure 2b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) Falling weight impact tester model CEAST 9340, and (b) specimen clamped 

 inside thermal conditioning chamber of impact tester. 

The SAJs were subjected to the selected test temperature (50°C or 75C) for at least 45 min, before 

clamping the specimen. This time is enough to ensure homogenous distribution of the temperature 

across the thickness of the SAJs, which assisted by their lower thermal conductivity (4.6-0.42 W/mC) 

compared with some important engineering materials such as steel (= 53 W/mC), brass (= 109 

W/mC) and Aluminum (= 210 W/mC) [24]. The upper tapered surface of the SAJs was marked and 

accurately centered against a steel plate having a rectangular window of 125x75 mm2. This yields a 75 

mm long span. The SAJs were constrained clamped-clamped via two-steel strips, which were pressed 

via four-clamps of the testing machine as shown in Fig. 2b.  

The SAJs were subjected to thermo-mechanical impact loads at energy of 1.25 J. The impact 

energy of 1.25 J was selected based on preliminary tests, which enough to collapse the joints at RT. At 

75C, the SAJs are not fractured and thus, additional impact tests were performed at impact energy of 

2.27J. The impact tests were performed via hemispheric impactor of 16 mm in diameter. The testing 

machine was equipped with a pneumatic anti-rebound device that mainly used to prevent secondary 

impact on specimen when tup rebounds after impact. Three SAJs were tested for each adhesive type 

(NE and CNT/E) and temperature degree (25C, 50C and 75C).  

In general any material fixed as clamped-clamped and subjected to temperature it will be expand 

and may be bend due to buckling. In the present study, the adherends of the SAJs is made from woven 

CFRP composite with approximate zero (or negative) axial coefficient of thermal expansion (CTE) of 

the yarns, which can effectively restrict the in-plane thermal displacement motions of epoxy resin [25]. 

The CTE of some important engineering materials are: -0.1 for carbon fiber, 5-6 for glass fiber, 12 for 

steel and 24 for aluminum (10-6/C). Accordingly, the carbon fiber adherends of the SAJs have 

approximately zero thermal expansion, no buckling and remained straight without any deformation 

before applying the thermal-impact load.  

The values of the falling height and impact velocity were automatically evaluated by the machine 

software. However, they can be determined from Eqs. (2) and (3), respectively, as follows: 

 

Fan 

Fracture of the SAJ 
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where Ei is the impact energy (1.25 J and 2.27 J), vi is the impact velocity (0.892 m/s and 0.897 m/s, 

respectively), H is the drop-height of the impactor (41 mm), m is the total mass of the impactor (3.132 

kg and 5.632 kg, respectively) and g is the gravity acceleration (g  = 9.81 m/s2).  

Knowing the contact force and the impact velocity, the impactor acceleration a(t), velocity v(t), 

displacement/deformation u(t), and energy E(t), respectively, were calculated in terms of time, as 

follows [26]:  
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where E(t) is the total energy transferred from the impactor to the specimen at an instant t. A part of 

E(t) is dissipated (absorbed) through several damage mechanisms. Another part is stored as elastic 

energy within the specimen and is restituted back to the impactor as residual or rebound kinetic 

energy. By subtracting the rebound energy (𝐸𝑟) from the impact energy (Ei = ½ m 2
iv ) it is possible to 

calculate the absorbed energy (Ea). The residual energy is considered as the energy of the impactor 

when it rebounds and loses contact with impacted plate, i.e., when the force decreases back to zero. 

Hence, the absorbed energy (Ea) is evaluated as the asymptotic value of the energy E(t) [24]. In most 

of the performed tests, the specimen collapsed before it could restitute back the elastic energy to the 

impactor. In such case, the absorbed energy cannot be evaluated and thus, the energy at failure is 

determined instead. In addition, the maximum contact force, the displacement at maximum contact 

force and the impact bending stiffness were also determined from the load-displacement curves.  

2.4.  Flexural Tests 

Three-point-bending tests were performed on the SAJs at room temperature using servo-hydraulic 

universal testing machine (model Instron 8872, 10 kN). The bending tests were carried out at constant 

cross-head speed of 1.0 mm/min. The support span (75mm, Fig. 3) is closed to the recommended 

optional span-to-thickness ratio of 16:1, ASTM D7264. This optional span value was selected to 

simulate the support-pan (75mm) of the impact tests in which the specimens were clamped on a 

rectangular window of 125x75 mm2. The residual bending properties were determined for the non-

collapsed impacted specimens, especially which were tested at temperature of 75C and impact energy 

of 1.25J. The loading roller was located on the center of the marked tapered surface of the impacted 

SAJs.  For each test, the force and the cross-head displacement were recorded. Subsequently, the 

(residual) flexural stiffness, the maximum force at failure and the deflection at failure were 

determined. 
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Figure 3. Schematic of three-point bending test of the SAJs. 

 

3.  Results and discussion 

3.1.  Load-displacement curves 

Figures 4 and 5 show samples of load-displacement curves and energy-time curves of respectively the 

NE-SAJs and CNT-SAJs in drop-weight impact tests at 1.25J and different temperatures. The main 

characteristic of the load-displacement curves at room temperature (RT) of 25C and at 50C is the 

elastic-brittle behavior of both NE-SAJs and CNT-SAJs. The force increases almost linearly due to the 

viscoelastic behavior of the adhesive as well as the adherends, which have stiffness variation (lowest 

toward the tip). The slope of the linear portion of the load-displacement curve starts to decrease at 

about 80% of the maximum contact force due to disbonding in the bond line region of the scarf joint 

[12]. A small portion of the absorbed energy is dissipated by material damage (demonstrated by the 

decrease of the slope of the linear portion of the load-displacement curve at higher contact force). The 

absorbed energy was stored as the elastic strain energy and converted to kinetic energy after brittle 

fracture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  (a) Load-displacement curves, and (b) Energy-time curves of the NE-SAJs at 1.25 J  

 

 
75 mm 
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A sudden drop to zero-force was observed at the maximum contact force, demonstrating a brittle 

failure (fracture) of the SAJs and provides a measurement of a maximum contact force and the 

displacement at maximum force. This behavior was attributed to the elastic-brittle behavior of either 

the bulk adhesive [3,27] or the SAJs [5-7] in tensile tests at RT. Moreover, the load-displacement 

curves of the CFRE laminates, in low-velocity impact tests, showed an elastic-brittle behavior at RT 

and 50C [24]. Khashaba and Othman [24] have reported that increasing the temperature from RT to 

50°C has insignificant effect on low-velocity impact damage resistance of CFRE laminates.  

The load-displacement behavior of the NE-SAJs and the CNT-SAJs at 75C is characterized by 

hysteresis curves accompanied with large displacements as well as lower impact bending stiffness, 

which means the viscosity is the main source of energy absorption, as shown in Figs. 4a and 5a, 

respectively. This behavior was attributed to the softening of the adherends and the adhesive layer, 

which has glass transition temperature (72C) slightly lower than the test temperature. The energy-

time curves of the NE-SAJs and the CNT-SAJs at 75C behave almost in the same manner as shown 

in Figs 4b and 5b respectively. The total impact energy (1.25 J) is first transferred to the joint. It is 

stored as elastic energy and non-elastic damage energy. The NE-SAJs and the CNT-SAJs absorb 

energy of about 65% of the impact energy (1.25 J) in the form of damages and leaving elastic energy 

of about 35%, which is dissipated in the rebound of the impactor. The joints under such test conditions 

(impact energy of 1.25 J and test temperature of 75C) are not collapsed and thus, the residual flexural 

properties are measured and compared with those of fresh SAJs as will be seen later. To measure the 

failure properties of the SAJs, new impact tests are performed at impact energy of 2.27 J and test 

temperature of 75C and the results are compared with those carried out at 1.25 J.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  (a) Load-displacement curves, and (b) Energy-time curves of the CNT-SAJs at 1.25 J  
 

Figure 6a and b shows respectively samples of the load-displacement and energy-time curves of 

both NE-SAJs and CNT-SAJs at impact energy of 2.27 J and test temperature of 75C. The first region 

of the load-displacement curves of the SAJs typically behave almost linearly, up to a displacement of 

about 0.5 mm, followed by a nonlinear elastic behavior accompanied with brittle catastrophic fracture 

at maximum contact load, Fig. 6a. The displacements at maximum contact loads are nearly three times 
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larger than that tested at 1.25 J, Figs. 4a and 5a. The CNT-SAJs have higher impact bending stiffness, 

larger contact force and lower displacement at maximum contact force compared with those of the 

NE-SAJs as shown in Fig. 6a. One NE-SAJ was not fractured at 2.27 J and accordingly, has a 

hysteresis load-displacement behavior and energy-time curve with rebound energy of 23% and 

absorbed energy of 77% as shown in Fig. 6b. It is interesting to note that the load-displacement curves 

of the fracture and not fractured NE-SAJs have almost the same behavior up to the maximum contact 

load (at displacement of 2.65 mm).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) Load-displacement curves, and (b) Energy-time curves of the CNT-SAJs 

 at 75C and 2.27 J  

3.2.  Effect of CNTs 

The impact bending stiffness, maximum contact force and displacement at maximum contact force are 

measured directly from the load-displacement curves and the average value of three tests, for each 

condition, are presented vs temperature as shown in Figs. 7a, 8a and 9a, respectively. The impact 

bending stiffness values in Fig. 7a were measured from the slope of the initial linear portion of the 

load-displacement ascending curves of Figs. 4a and 5a. Impact bending stiffness has been known to be 

an important property in assessing the damage resistance of composite materials in particular to 

delamination [28].  

Figures. 7a, 8a, 9a and 10a shows the infusion effects of optimum percentage of (0.5 wt%) CNTs 

into the adhesive layer on the impact bending stiffness, maximum contact force, displacement at 

maximum contact force and energy respectively at different temperatures. The results in Figs. 7a to 

10a include also the standard deviation and the gain/loss percentages in the impact properties of the 

CNT-SAJs compared with the NE-SAJs. The gain/loss percentages in the impact bending stiffness, 

maximum contact force, displacement at maximum contact force and energy at 50C and 75C are 

also estimated and compared with those at room temperature of 25C as shown respectively in Figs. 

7b, 8b, 9b and 10b.  

It is evident from Fig. 7a that incorporation of CNTs into the epoxy adhesive increases the impact 

bending stiffness of the CNT-SAJs by 8.3%, 7.4% and 11.8% compared with the NE-SAJs at test 

 

 (a) 

 

 (a) 



18th International Conference on Aerospace Sciences & Aviation Technology

IOP Conf. Series: Materials Science and Engineering 610 (2019) 012007

IOP Publishing

doi:10.1088/1757-899X/610/1/012007

11

temperatures of 25C, 50C and 75C respectively. Accordingly, the maximum contact force of the 

CNT-SAJs, at these test temperatures, was increased by 15.6%, 21.3% and 18.9% respectively as 

shown in Fig. 8a.  

The improvement of the impact bending stiffness as well as the maximum contact force in drop 

weight impact tests was due to the reinforcing effects of high strength CNTs (63 GPa to 200 GPa [17]) 

on the increased mechanical properties of the adhesive material as shown in Table 1. Moreover, 

incorporation of CNTs into the adhesive layer can activate interfacial mechanisms at the nanoscale, 

which can play a key role in arresting crack propagation and accordingly, increasing the local stiffness 

of the SAJ [25]. Alnefaie et al. [29] reported that the failure strain of CNT-nanocomposite was lower 

than those of the neat epoxy by 18.9%. The mechanical interlocking of the adhesive layer with the 

debonded carbon fibers (CFs) that superimposed on the valley and peaks of the machined tapered 

surfaces, may be more effective for the modified adhesive with CNTs and thus, increasing the 

mechanical properties of their joints [6,30].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Gain/loss percentage of the stiffness: (a) effect of CNTs, and (b) effect of temperatures. 

 

In addition, Khashaba et al. [5-7] showed improvement ranging from 12% to 39.6% in the ultimate 

tensile strength of the CNT-SAJs with scarf angles reanging from 5 to 45 compared  with those of 

the NE-SAJs. In particular, the ultimate tensile strength of the 15-CNT-SAJs was (91.88 MPa) 

improved by 21.9% compared with those of the NE-SAJs (75.39 MPa) [5].  

The higher contact force of the CNT-SAJs is compensated by their higher impact bending stiffness 

and accordingly, the CNTs don't seem to be influencing the displacement at maximum contact force of 

the SAJs as shown in Fig. 9a. The results in this figure showed that the gain/loss in the displacements 

at maximum contact force of the CNT-SAJs were 5.3%, 2.8% and -6.6% at test temperatures of 25C, 

50C and 75C respectively.  

The energy-time curves in Figs. 4b to 5b were obtained directly from the PC of the testing machine 

and can also be estimated from the area under the load-displacement curves [14]. The measured 

energy at 25C and 50C in these curves is the maximum energy at failure (zero loads). Because of the 

SAJs are not fractured at temperature of 75C, the absorbed energy was determined at zero load after 

rebounding the impactor.  
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Figure 8. Gain/loss percentage of the maximum contact force: (a) effect of CNTs,  

and (b) effect of temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Gain/loss of the displacement at maximum contact force: (a) effect of CNTs,  

and (b) effect of temperatures. 

 

Figure 10a shows the effect of the CNTs on the energy of the SAJs at different temperatures. The 

results in this figure showed that the incorporation of CNTs into the adhesive layer of the SAJs 

improves their energy by 15.2% and 16.4% respectively at temperatures of 25C and 50C. The higher 

energy of the CNT-SAJs at 25C and 50C can be interpreted with the aid of the CNTs ‘‘stick-slip’’ 

motion [25,31,32], which is responsible for the improvement of energy dissipation capability of CNT-

SAJs. During impacting the CNT-SAJ, an interfacial shear stress is generated between the CNTs and 

the surrounding epoxy due to the elastic mismatch according to the well–known shear lag theory. At 

small contact loads, the nanotubes will elongate together with the matrix. Once the contact load 

  

(a) (b) 

  

(a) (b) 



18th International Conference on Aerospace Sciences & Aviation Technology

IOP Conf. Series: Materials Science and Engineering 610 (2019) 012007

IOP Publishing

doi:10.1088/1757-899X/610/1/012007

13

exceeds a critical value, the impact bending displacement will be increased and thus the nanotubes will 

stop elongate together with the matrix [32]. Further increasing of the contact load will result in 

increasing the dissipated energy through the slippage between the nanotubes and the matrix [29,32]. 

The increase in the absorbed energy of the CNT-SAJs was also assisted by the improving of 

fracture toughness mode-I and mode-II of FRP composites modified by CNTs [33,34]. Karapappas et 

al. [33] found a significant increase in the load bearing ability as well as in the fracture energy for both 

Mode-I and Mode-II of the modified epoxy matrix with CNTs. Quan et al. [34] reported that 

incorporation of 0.5wt% MWCNTs to bulk epoxy and CFRPs improves the mode-I fracture energy by 

15.2% and 8.2% respectively compared with the control materials. In addition, mode-II fracture 

energy of bulk epoxy and CFRPs were dramatically enhanced by 60.0% and 68.1% respectively. They 

attributed the improvement in both mode-I and mode-II fracture energy of the modified bulk epoxy 

and FRP composites to MWCNT pull-out, crack bridging, nanotube breaking and crack deflection. 

At temperature of 75C the CNTs have insignificant effect on the absorbed energy due to the lack 

of pull-out resistance of the debonded CNTs from the epoxy adhesive. This was attributed to the fact 

that the mechanical properties of the polymer matrices are highly degraded at test temperature closed 

to their Tg.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Gain/loss percentage of the energy: (a) effect of CNTs, and (b) effect of temperatures. 

3.3.  Effect of test temperature 

The effect of test temperature on the impact bending stiffness, maximum contact force, displacement 

at maximum contact force and energy of the SAJs is illustrated respectively in Figs. 7b, 8b, 9b and 

10b. The gain/loss percentages in these figures were calculated for the impact properties at test 

temperatures of 50C and 75C relative to those at RT of 25C. 

It is evident from Fig. 7a that the impact bending stiffness of the SAJs decreases significantly with 

increasing the test temperatures and thus the maximum contact force, Fig. 8a.  On the contrary, the 

displacement at maximum contact force was evidently increased, Fig. 9a, as a result of decreasing the 

joint impact bending stiffness. At 50C, due to the softening and ductility of the specimens, the impact 

bending stiffness of the NE-SAJs and CNT-SAJs is moderately decreased by respectively 14.8% and 

15.5%, Fig. 7b. Accordingly, the maximum contact force of the NE-SAJs and CNT-SAJs was 

respectively reduced by 9.3% and 4.8%, Fig. 8b, and the displacement was increased by 7% and 4.5%, 

Fig. 9b, compared with those tested at RT.  
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The temperature effects on the impact properties of the SAJs are aggravated at 75C. The results in 

Fig. 7b showed that the impact bending stiffness of the NE-SAJs and CNT-SAJs at test temperature of 

75C was drastically decreased by about 72.5% and 71.6% respectively and thus, the maximum 

contact force was eventually decreased 58% and 57%, Fig. 8b, compared with those tested at RT. 

Indeed, it is widely reported that stiffness, yield stress and strength of polymers significantly drop near 

glass transition temperature [35]. On the other hand, the displacements of the NE-SAJs and CNT-SAJs 

were dramatically increased by 170% and 139%, respectively, compared with those tested at RT as 

shown in Fig. 9b. Decreasing the maximum contact force and increasing the displacement at 

maximum contact force as a result of decreasing the joint impact bending stiffness was clearly 

indicated in Fig. 11. 

This result was attributed to the softening of the adhesive layer of the SAJs at 75C and thus, the 

capacity to transfer the loads over the adhesive/adherends interfacial bond was decreased. It is 

believed that the constrained clamped-clamped SAJs subjected to elevated temperature will result in 

considerable and unavoidable initial strain states in the adhesive layer and thus, decreasing the impact 

properties of the joint under thermo-mechanical impact loads. The effect of temperature on the initial 

strain state along the adhesive layer is a new topic and remains open for further research. Nguyen et al. 

[11] reported that the ultimate load and stiffness of double strap steel/CFRP adhesively-bonded joints 

decreased by about 15%, 50% and 80% when temperatures increased by 0C, 10C, and 20C above 

Tg, respectively. Agarwal et al. [36] have reported that to avoid failure of steel-CFRP single-lap joints 

under thermo-mechanical loads, the  highest service temperature of the adhesive should be lower than 

its Tg value by about 30C, which may agree with the results obtained at 75C compared to those at 

RT and 50C.  

 

    

 

 

 

 

 

 

 

 

 

Figure 11. Force and displacement vs. stiffness of the SAJs 

 

The energy at failure of the NE-SAJs and CNT-SAJs at test temperature of 50C is marginally 

increased by 1.4% and 2.5%, respectively, compared with those tested at RT, Fig. 10b. This was 

attributed to the force-displacement curves of the SAJs at RE and 50C is almost the same behavior. 

While at 75°C (slightly higher than Tg of the adhesive materials, 72C), hysteresis loop behavior is 

observed, which means the viscosity is the main source of energy absorption. Regarding to the 

different ways of energy dissipation, it is inappropriate to compare the energy at failure at RT with the 

higher energy absorption at 75C (25.9% and 7.5% respectively for NE-SAJs and CNT-SAJs, Fig. 

10b). In that context, it is worth noting that at test temperature of 75C, the CNTs have insignificant 

effect on the absorbed energy.  
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This result was due to the fact that the infusion of CNTs into the adhesive layer can play contrary 

roles in deciding the performance of the SAJs especially under various temperature environments for 

the following reasons: (a) improving the mechanical properties of the CNT-nanocomposites as shown 

in Table 1, (b) improving the glass transition temperature (Tg) of adhesive [16-19] and thus delay their 

softening temperature, (c) the difference in the coefficients of thermal expansion of the reinforcing 

carbon fibers, CNTs and the adhesive could be significant enough to cause considerable incompatible 

initial thermal strains along the adhesive layer between CFRP adherends and thus, microcracks 

initiation as well as interfacial shear failure before applying the impact loads, and (d) improving the 

thermal conductivity of the adhesive layer and thus, rapid distribution of the temperature with more 

softening and reduction of the adhesive strength. The thermal conductivity of multi-walled carbon 

nanotubes is (= 3000W/mK[20,21]) very high compared with epoxy adhesive (0.3 W/mK[21]) and 

some famous metals such as Aluminum (= 210 W/m°C).  

Figures 12a and b shows a comparison between the fractured surfaces of the SAJs at RT and 75C 

respectively. The fracture of the SAJs at RT was due to interfacial shear between the adhesive layer 

and the adherends, which initiated from the adherends tips and propagated toward the center of the 

tapered surfaces [5]. Cohesive failure of the adhesive layer was observed owing to jumping the 

interfacial failure from one interface to the other as shown in Fig. 12a. At 75C the adhesive smearing 

the fractured surface of one tapered surface while, the adhesive layer was attached to the other tapered 

surface without cohesive failure of the adhesive layer as shown in Fig. 12b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Images of fractured surfaces of the NE-SAJs: (a) at RT of 25C (1.25J), 

 and (b) at 75C (2.25J) 

3.4.  Effect of impact energy 

The effect of impact energy of 2.27 J on the failure properties of the SAJs was investigated at 

temperature of 75C, where the joints are not collapsed under impact energy of 1.25 J. Fig. 13 shows 

the impact properties of both the NE-SAJs and CNT-SAJs at 2.27 J and 75C. The results are 

compared with those tested at 1.25 J and 75C and accordingly, the gain/loss in the impact bending 

stiffness, maximum contact force, displacement at maximum contact force and energy were illustrated 

in Fig. 13 (vertical percentages). This figure also shows the effect of CNTs on the gain/loss in the 

impact properties of the CNT-SAJs compared with the NE-SAJs (horizontal percentages between 

parentheses) at 75C and 2.27 J. 
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The results in Fig. 13 showed that at 2.27 J, the impact bending stiffness of both the NE-SAJs and 

the CNT-SAJs are increased respectively by 25.1% and 13.7% and accordingly, the maximum contact 

force was increased by 16% and 8.2% compared with those tested at 1.25 J. As the impact energy is 

increased, the energy transferred to the SAJs before failure is also increased. Hence, at impact energy 

of 2.27 J the displacement at maximum contact force of the NE-SAJs and the CNT-SAJs was 

increased by 50.5% and 35.7% respectively compared with those tested at 1.25 J. The energy at failure 

of both the NE-SAJs and the CNT-SAJs was also increased at impact energy of 2.27 J by 91.1% and 

66.6% respectively relative to that tested at 1.25J.  

Although the CNTs at 2.27J and temperature of 75C have slightly increased the impact bending 

stiffness of the CNT-SAJs (1.6% increase), the maximum contact force was increased (10.9%) and the 

displacement at the maximum contact force was decreased (-15.8%) compared with the NE-SAJs. 

Qualitatively, this behavior agrees with the stiffness effects of Fig. 11. On the other hand, the energy 

at failure of the CNT-SAJs was decreased by -14.3% compared with that of NE-SAJs. These results 

were probably due to the contrary role of the CNTs in deciding the performance of composite bonded 

joints especially at higher temperatures near the glass transition value (Tg). The higher thermal 

conductivity of the CNTs (= 3000W/mK) compared with that of the epoxy adhesive (0.3 W/mK), can 

increase their temperature and accordingly, decrease the resistance to pull-out the CNTs from the 

adhesive materials. The pull-out of the CNTs can be assisted by their small length 30 μm and the 

elastic mismatch between CNTs and adhesive.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Effects of impact energy and CNTs on the impact properties of the SAJs at 75C. The 

vertical percentages show the effect of impact energy, while the horizontal percentages show the 

effect of CNTs. 

3.5.  Bending results and discussion  

Figure 14 shows a sample from the load-displacement curves of the NE-SAJs and CNT-SAJs in 

bending tests at RT. The main characteristics of these curves are the initial nonlinear small portion 

until intimate contact with the loading members of the three-point bending setup. The initial nonlinear 

region is followed by a linear relationship, which used to measure the flexural stiffness (modulus) of 
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the SAJs. The NE-SAJs were failed in catastrophic (brittle) manner owing to the interfacial failure of 

the adhesive layer, whereas almost of the CNT-SAJs exhibited interlaminar shear cracks that were 

initiated around the adhesive joint and propagated toward the specimen ends without adhesive failure. 

The initiation and propagations of the interlaminar cracks in the adherends of the CNT-SAJs can be 

demonstrated by the unstable load-displacement relationship up to the final fracture of the joint as well 

as visually examination of the joints during the bending test as shown in Fig. 14. 

 

Figure 15 shows the flexural strength of fresh (new) SAJs as well as residual flexural strength after 

impact at 1.25 J and 75C. The results in this figure showed that the incorporation of CNTs into the 

adhesive layer improves the flexural strength by 36.2%. The residual strength of the CNT-SAJs is 

(98.2%) higher than that of the NE-SAJs (86.1%). The reasons for the higher strength of the CNT-

SAJs compared with the NE-SAJs were discussed in section 3.2. In addition to these reasons, the 

higher flexural strength accompanied with the interlaminar shear failure of the adherends without 

adhesive failure of the CNT-SAJs demonstrates the improvement in their interfacial shear resistance as 

a result of incorporating CNTs into the adhesive layer. 

 

It is worth noting that although both of the impact and bending SAJs have the same gauge length 

(75 mm), the impact bending stiffness of the SAJs, Figs. 4a and 5a, is about two times higher than that 

determined through the bending tests at RT, Fig. 14. This result was attributed to the fact that the SAJs 

in the impact test can be considered as double-clamped beam, while in bending tests the joints were 

simply supported through the three-point tests setup. In addition, the loading rate in impact test is 

about fifteen times (14.9 mm/min) higher than that of the bending tests (1 mm/min). Challita et al. [37] 

reported a significant increase of the stiffness and strength of an epoxy bulk adhesive as the strain 

rate/loading velocity increases under compression and shear loadings. Based on the temperature-time 

superposition principle, it has been reported that [38] the increase in loading rate has a hardening 

effect similar to the effect of decreasing temperature of the viscoelastic materials, and accordingly 

increasing their stiffness. 

 

The scatter in the flexural results of the fresh SAJs is less than that of the residual flexural 

properties (strength and modulus), which experienced different levels of impact damages before the 

flexural tests. The maximum scatter was observed in the residual tests of the CNT-SAJ, in which the 

final fracture is decided either by interfacial failure or interlaminar shear failure of the adherends. On 

the other hand, the minimum scatter was observed for the fresh NE-SAJs in which the interfacial 

shearing is the dominant failure mechanisms.  

 

Figure 16 shows the effect of CNTs on the flexural modulus of the fresh as well as the residual 

strength after impact (at 1.25 J and 75C) NE-SAJs and CNT-SAJs. The results in this figure showed 

that incorporation of CNTs into the adhesive layer has insignificant effect on the flexural modulus of 

the fresh CNT-SAJs compared with those of the NE-SAJs. The residual modulus of the NE-SAJs and 

CNT-SAJs has remarkable decreased to 71.7% and 81.3% respectively. This is because the residual 

flexural modulus depends on the damage level in the SAJs owing to the impact test, which greatly 

effect on the flexural stiffness of the joint and thus, the flexural modulus of the joint.  
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Figure 14. Load-displacement curves of fresh 

SAJs in bending tests 

 

Figure 15. Flexural strength and residual strength 

after impact of the SAJs at 1.25 J and 75C 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Flexural modulus and residual modulus after impact 

 of the SAJs at 1.25 J and 75C 

4. Conclusions 

In this work, an extensive experimental program was conducted to characterize the mechanical 

properties of scarf adhesive joints (SAJs) subjected to flexural and thermo-mechanical impact loads. 

Conclusions on the flexural properties as well as the effect of CNTs, impact energy, test temperature, 

on the impact bending stiffness, maximum contact force and absorbed/failure energy of the SAJs can 

be drawn as follows: 
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Effect of temperature: The main characteristic of the load-displacement curves (Ei = 1.25J) of 

both NE-SAJs and CNT-SAJs at room temperature (RT) of 25C and 50C is the elastic-brittle 

fracture involves the sudden drop to zero-force. While at 75C, hysteresis loop behavior is observed, 

which means the viscosity is the main source of energy absorption. At this test temperature the impact 

bending stiffness of the SAJs was drastically decrease by about 72% and hence, the maximum contact 

force of the NE-SAJs and CNT-SAJs was drastically decreased by 58% and 57%, respectively. The 

energy at failure of the NE-SAJs and CNT-SAJs at test temperature of 50C is marginally increased by 

1.4% and 2.5%, respectively, compared with those tested at RT. Regarding to the different ways of 

energy dissipation, it is inappropriate to compare the energy at failure at RT and 50C with the higher-

energy absorption at 75C (25.9% and 7.5% respectively for NE-SAJs and CNT-SAJs). 

Effect of impact energy: To measure the failure properties of the SAJs at 75C, new impact tests 

are performed at impact energy of 2.27 J and the results are compared with those carried out at 1.25 J. 

The results showed that as the impact energy is increased from 1.25 to 2.27 J, the impact bending 

stiffness, the maximum contact force, the displacement at maximum contact force are increased. As a 

consequence, the maximum energy transferred to the specimen is also increased. The CNT-SAJs have 

higher impact bending stiffness, larger contact force and lower displacement at maximum contact 

force compared with those of the NE-SAJs.  

Effect of CNTs: Incorporation of CNTs into the epoxy adhesive increases the impact bending 

stiffness of the CNT-SAJs by 8.3%, 7.4% and 11.8% compared with the NE-SAJs at test temperatures 

of 25C, 50C and 75C, respectively. Accordingly, the maximum contact force of the CNT-SAJs, at 

these test temperatures, was increased by 15.6%, 21.3% and 18.9% respectively. The energy at failure 

was of the CNT-SAJs improved by 15.2% and 16.4%, respectively at temperatures of 25C and 50C. 

In that context, it is worth noting that at test temperature of 75C, the CNTs have insignificant effect 

on the absorbed energy due to the lack of CNTs pull-out resistance from the epoxy adhesive. 

Flexural properties: The load-displacement curves and the visual examination of the SAJs in the 

flexural tests showed that the NE-SAJs were failed in catastrophic (brittle) manner owing to the 

interfacial failure of the adhesive layer. On the other hand, almost of the CNT-SAJs exhibited 

interlaminar shear cracks that were initiated around the adhesive joint and propagated toward the 

adherend ends without adhesive failure. The flexural strength of the CNT-SAJs is improved by 36.2% 

compared to the NE-SAJs. In addition, the residual flexural strength of the impacted CNT-SAJs at 1.2J 

and 75C is (98.2%) higher than those of the NE-SAJs (86.1%). The residual modulus of the NE-SAJs 

and CNT-SAJs has remarkable decreased to 71.7% and 81.3% respectively.  
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